Prove the statement \[ 1 + 2 + 3 + \dots + n = \frac{1}{2} n (n+1) \] by using the principle of mathematical induction.
Proof:
Let \[ P(n) \] be the statement:
\[ 1 + 2 + 3 + \dots + n = \frac{1}{2} n (n+1) \]
Basic Step:
For \[ n=1 \]
\[ \text{LHS} = 1 \];
\[ \text{RHS} = \frac{1}{2} \times 1 \times (1+1) \]
\[ = \frac{1}{2} \times 2 \]
\[ = 1 \]
\[ \therefore P(1) \] is true
Inductive Step:
Assume \[ P(k) \] is true.
i.e., \[ 1 + 2 + 3 + \dots + k = \frac{1}{2} k (k+1) \]
T.P \[ P(k+1) \text{ is true.} \]
i.e., T.P \[ 1 + 2 + 3 + \dots + k + (k+1) = \frac{1}{2} (k+1)(k+2) \]
\[ \text{LHS}: \]
\[ 1 + 2 + 3 + \dots + k + (k+1) = \frac{1}{2} k(k+1)+k+1 \]
\[= \frac{k(k+1)+2(k+1)}{2} \]
\[= \frac{1}{2}[k^2 + k + 2k + 2] \]
\[= \frac{1}{2}[k^2 + 3k + 2] \]
\[= \frac{1}{2}[(k + 1)(k + 2)] \]
\[= \text{RHS} \]
\[ \therefore P(k + 1) \] is true
\[ \therefore P(n) \] is true
\[ \therefore 1 + 2 + 3 + \dots + n = \frac{1}{2} n (n+1) \forall n \]
Download Study Notes in PDF Format
Get easy-to-read PDF notes for your reference. Click below to download now!
Download Now
No comments:
Post a Comment